Phototropin-dependent weak and strong light responses in the determination of branch position in the moss Physcomitrella patens.
نویسندگان
چکیده
Branch position in the moss Physcomitrella patens is regulated by blue light. In this study, fluence rate dependency of branch position determination was investigated by partial cell irradiation with a microbeam. With a 30 Wm(-2) or lower fluence rate, branches formed at the microbeam area, but formed outside the microbeam when the fluence rate was raised to > or = 200 Wm(-2). Thus, both weak and strong light responses influence the determination of branch position. Further, light sensitivity of both responses was reduced in phototropin knock-out lines, revealing an involvement of phototropin as the blue light receptor.
منابع مشابه
Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens.
Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were cl...
متن کاملHolophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling
Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Phy...
متن کاملCryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
The blue light receptors termed cryptochromes mediate photomorphological responses in seed plants. However, the mechanisms by which cryptochrome signals regulate plant development remain obscure. In this study, cryptochrome functions were analyzed using the moss Physcomitrella patens. This moss has recently become known as the only plant species in which gene replacement occurs at a high freque...
متن کاملIsolation and regeneration of protoplasts of the moss Physcomitrella patens.
This method is adapted from a protocol described by Grimsley et al. (1977). For more information about P. patens as a model organism, see The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies (Cove et al. 2009a). For details about the growth of P. patens on cellophane overlay plates, see Culturing the Moss Physcomitrella patens (Cove et al. 2009b). For p...
متن کاملTransformation of moss Physcomitrella patens gametophytes using a biolistic projectile delivery system.
RELATED INFORMATION For more information about P. patens as a model organism, see The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies (Cove et al. 2009a). The growth of protonemal tissue is described in Culturing the Moss Physcomitrella patens (Cove et al. 2009b), and a method for isolation of P. patens protoplasts is found in Isolation and Regeneratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 49 12 شماره
صفحات -
تاریخ انتشار 2008